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After years of generating data describing age-related changes in organisms, organs, tissues, cells and
macromolecules, biogerontologists are now able to construct general principles of aging and explore
various possibilities of gerontomodulation. There is significant evidence to show that aging is
characterized by a stochastic accumulation of molecular damage and a progressive failure of maintenance
and repair, and the genes involved in homeodynamic pathways are the most likely candidate virtual
gerontogenes. Several approaches are being tried and tested to modulate aging in a wide variety of
organisms with the ultimate aim of improving the quality of human life in old age, and prolong their
health-span. These approaches include gene therapy, hormonal supplementation, nutritional modulation
and intervention by antioxidants and other molecules. A recent approach is that of applying hormesis
in aging research and therapy, which is based on the principle of stimulation of maintenance and repair
pathways by repeated exposure to mild stress.
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IntroductionIntroductionIntroductionIntroductionIntroduction
Biogerontology, the study of the biological basis of
aging, has now attained the status of being a fully
matured field of scientific research. After decades of
systematic collection of data describing age-related
changes in organisms, organs, tissues, cells and
macromolecules, biogerontologists are now in a
position to construct general principles of aging and
explore various possibilities of intervention using
rational approaches. The highly complex phenome-
non of aging is now reasonably well described and
any missing details will be filled in sooner or later
without really changing the overall picture that has
emerged so far. There are several excellent books
and monographs which provide comprehensive
data and cross-references to original publications on
age-related changes at all biological levels (see for
example, Evans et al. 2000, Holliday 1995, Kanungo
1980, 1994, Masoro & Austad 2001, Rattan &
Toussaint  1996).

The large body of published data clearly shows
that aging has many facets. The progression or rate

of aging is highly variable in different species, in
organisms within a species, in organs and tissues
within an organism, in cell types within a tissue, in
sub-cellular compartments within a cell type, and in
macromolecules within a cell (Rattan  2000a, b).
Thus, there is neither a single way of defining aging,
nor is there a single cause. Most importantly, these
observations have led most biogerontologists to
abandon the notion of aging being genetically
programmed and to consider aging as being
stochastic and individualistic (Hayflick 1994, 2000,
Holliday 1995, 2000, Rattan 2000a).

Principles of AgingPrinciples of AgingPrinciples of AgingPrinciples of AgingPrinciples of Aging
Although the descriptive data about aging suggest
that there are no universal markers of aging, some
general principles can still be derived, which can be
useful for future research and intervention. First,
aging is considered to be an emergent phenomenon
seen primarily in protected environments that allow
survival beyond the natural lifespan in the wild. This
is because most animals in the wild die due to
accidents, infections and predation without showing
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significant signs of aging. Second, aging is the
progressive failure of homeodynamics, which is the
ability of all living systems to respond to internal
and external stress, and to counteract by
neutralization and/or by adaptation any
disturbances threatening their survival (Rose 1997).
A failure of homeodynamics leads to the
impairment in functional ability at all levels of
organization and increased possibilities of a plethora
of diseases and eventual death. Third, unlike
development, which is a highly programmed and
well-coordinated genetic process in the evolution-
ary life history of an organism, there is no genetic
program that determines the exact duration of
survival of an organism.

The evolutionary theories of aging and longevity
have developed sophisticated and convincing
arguments against the existence of genes that may
have evolved specifically to cause aging and to
determine the lifespan of an organism (for a detailed
analysis of evolutionary arguments, see Kirkwood &
Austad 2000, Partridge 2001, Rose 1991). The role of
genes in determining the duration of lifespan is
primarily in terms of assuring what has been termed
"essential lifespan" (ELS) of a species, defined as the
time required to fulfill the Darwinian purpose of life,
that is successful reproduction and continuation of
generations (Rattan 2000 a,b). For example, species
undergoing fast maturation and early onset of
reproduction with large reproductive potential
generally have a short ELS. In contrast, slow
maturation, late onset of reproduction, and small
reproductive potential of a species is concurrent
with its long ELS (Finch 1990, 1998, Holliday 1994).
Considered this way, the ELS for Drosophila is less
than a week (Sørensen & Loeschcke  2002) and that
for Homo sapiens is about 50 years (Holliday 1996a),
even though in protected laboratory environments
and in modern societies they can live for several
months or for more than 120 years, respectively.

Therefore, genes that do influence longevity are
those that have evolved in accordance with the life
history of a species for assuring ELS. Such genes are
termed longevity assurance genes (Jazwinski 1996)
or vitagenes (Rattan 1998c). Several lines of evidence
support the view that natural survival and longevity
of a species is a function of maintenance and repair
capacities. For example, positive correlations

between species lifespan and the ability to repair
DNA, to defend against reactive oxygen species, to
respond and to counteract stress, and to proliferate
and turnover the cells have been reported. In
contrast, there is a negative correlation between
longevity and the rate of damage accumulation,
including mutations, epimutations, macromolecular
oxidation and aggregation (for cross references to
original publications, see Bürkle  2000, Holliday
1995, Levine 2002, Rattan 1989, 1995b, von Zglinicki
et al. 2001). Thus, the manifestation of aging and the
limits to lifespan are primarily due to the failure of
maintenance and repair mechanisms.

Gerontogenes: Real or Virtual?Gerontogenes: Real or Virtual?Gerontogenes: Real or Virtual?Gerontogenes: Real or Virtual?Gerontogenes: Real or Virtual?
A lack of specific genes that cause aging does not
imply that genes do not or cannot influence survival,
longevity and the rate of aging. There is ample
evidence from studies performed on yeast, fungi
(Jazwinski 1999), nematodes (Johnson 2002,
Johnson et al. 2000), insects (Rogina et al. 2000, Tatar
et al. 2001), rodents and humans (Arking et al. 2002,
Kuro-o et al. 1997, Yu et al. 1996) that mutations in
certain genes can either prolong or shorten the
lifespan, and can be the cause of premature aging
syndromes. Interestingly, these genes cover a wide
range of biochemical pathways, such as insulin
metabolism, kinases and kinase receptors, transcrip-
tion factors, DNA helicases, membrane glucosidases,
GTP-binding protein coupled receptors, and cell
cycle arrest pathways with little or no overlap
among them (Guarente et al. 2000, Jazwinski 1999,
Johnson 2002, Johnson et al. 2000, Martin & Oshima
2000, Rattan 2000b). Additionally, genetic linkage
studies for longevity in mice have identified major
histocompatibility complex (MHC) regions (Gelman
et al. 1988), and quantitative trait loci on chromosomes
7, 10, 11, 12, 16, 18 and 19 (De Haan et al. 1998, Miller
et al. 1998) as putative genes for aging. In human
centenarians, certain alleles of HLA locus on
chromosome 6 (Gelman et al. 1988), regions of
chromosome 4 (Puca et al. 2001), different alleles of
APO-E and APO-B, and DD genotype of angiotensin
converting enzyme (ACE) have been linked to
exceptional longevity (Frisoni et al. 2001, Heijmans
et al. 2000, Perls 2001, Tan et al. 2001).

The diversity of the genes associated with aging
and longevity of different organisms indicates that
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whereas the genes involved in repair and mainten-
ance pathways may be important from an
evolutionary point of view, each species may also
have additional "private" gerontogenic pathways
which influence its aging phenotype (Martin 1997).
Further evidence that the maintenance and repair
pathways are crucial determinants of natural
survival and longevity comes from experiments
performed to retard aging and to increase the
lifespan of organisms. For example, anti-aging and
life-prolonging effects of calorie restriction are seen
to be accompanied by the stimulation of various
maintenance mechanisms. These include increased
efficiency of DNA repair, increased fidelity of
genetic information transfer, more efficient protein
synthesis, more efficient protein degradation, more
effective cell replacement and regeneration,
improved cellular responsiveness, fortification of the
immune system, and enhanced protection from free-
radical- and oxidation-induced damage (Masoro
1995, Masoro & Austad 1996, Weindruch 1996, Yu
1999). Genetic selection of Drosophila for longer
lifespan also appears to work mainly through an
increase in the efficiency of maintenance
mechanisms, such as antioxidation potential
(Luckinbill & Foley 2000). An increase in lifespan of
transgenic Drosophila containing extra copies of
Cu-Zn superoxide dismutase (SOD) and catalase
genes is due primarily to enhanced defenses against
oxidative damage (Orr & Sohal 1994). The
identification of long-lived mutants of the nematode
Caenorhabditis elegans, involving various genes
provides other examples that increased lifespan is
accompanied by an increased resistance to oxidative
damage, an increase in the activities of SOD and
catalase enzymes, and an increase in thermotolerance
(Lakowski & Hekimi 1996, Larsen 1993, Lithgow
1996, Lithgow et al. 1995). In contrast, reduced activ-
ity of the tumour suppressor defense gene p53
induces premature aging in mice (Tyner  et al.
2002). A comparative analysis of oxidative stress
resistance ability of cells isolated from a variety of
animals also showed that species lifespan was
directly related to the cellular antioxidative defense
ability(Kapahi et al. 1999).

What is clear from the identification of the genes
influencing aging and longevity is that whatever
their normal function and mechanism of action may

be, these gerontogenes did not evolve to specifically
accumulate damage, to cause age-related changes
and to kill the organism. Since their involvement in
influencing aging and longevity cannot be denied,
they have been termed "virtual gerontogenes"
(Rattan 1995a).

Molecular Mechanisms of AgingMolecular Mechanisms of AgingMolecular Mechanisms of AgingMolecular Mechanisms of AgingMolecular Mechanisms of Aging
A generalized definition of aging as the failure of
homeodynamics still requires mechanistic explana-
tion(s) as to why such a failure occurs in the first
place and what controls the rate of failure in
different species. Over the last fifty years a large
number of hypotheses have been put forward,
which attempt to explain how the observed age-
related changes in macromolecules, cells, tissues,
organs and systems may occur. Main examples of
such hypotheses include altered gene regulation
(Kanungo 1980, 1994), somatic mutation accumula-
tion (Morley 1995, Vijg 2000), protein errors and
modifications (Holliday 1996b), reactive oxygen
species and free radicals (Harman 1994), immune-
remodeling and neuroendocrine dysfunctioning
(Franceschi et al. 2000). At the cellular level, the
so-called telomere loss theory (Harley et al.1992,
Olovnikov 1996), and epimutation theory of prog-
ressive loss of DNA methylation (Holliday1995) are
other examples of providing mechanistic explanations
for the loss of proliferative potential of normal,
differentiated and diploid cells in vitro  and in vivo.

These and other related hypotheses, which
provide a variety of explanations for understanding
the observed age-related alterations at a specific
level, can be quite useful within their area of focus.
However, in order to answer the question why the
occurrence of detrimental and eventually lethal
changes cannot be avoided completely, one has to
appeal to the evolutionary theories of aging and
longevity, as discussed above. To recapitulate, the
evolutionary life history of a species is what determ-
ines the extent of activity and stability of its
maintenance and repair networks required for its
ELS. For example, a nocturnal species can easily
survive with less efficient repair mechanisms against
UV-induced damage than a species exposed to the
sunlight. Similarly, a species evolved to live at high
altitude and low ambient oxygen concentration does
not have to have as efficient antioxidative defense
mechanisms as compared with species living in an
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high oxygen-containing environment. A progressive
failure of the network of maintenance and repair
mechanisms in the period beyond ELS is purely a
stochastic event, but within the constraints of the
design of the network (Carnes & Olshansky 1997).

Several theoretical and mathematical models are
being developed for understanding the interactive
nature of the biological networks and trade-offs
(Franceschi et al. 2000, Kowald & Kirkwood 1994,
1996). Recently, the reliability theory of aging and
longevity about the inevitable failure of complex
systems such as cells and organisms (Gavrilov &
Gavrilova  2001) has reiterated the fundamental law
that no process can be one-hundred-percent accurate
one-hundred-percent of the time, and it is the
interactive nature of genes, milieu and chance that
effectively determines how long a system can survive.
Therefore, in order to resolve the issue of widely
varying rates of aging in nature, it is important to
undertake comparative studies on various aspects of
the aging process in a variety of organisms with
widely differing life-history scenarios (Barja 2002).
Only then a complete understanding of the
mechanistic aspects of aging will be achieved and
better methods of intervention could be developed.

GerontomodulationGerontomodulationGerontomodulationGerontomodulationGerontomodulation
Unlike some other fields of research, it is integral to
biogerontology that effective means of intervention
are found, developed and applied for modulating
human aging in order to prevent the onset of age-
related diseases and improving the quality of life in
old age. This is because, whatever its academic and
intellectual importance, aging is a highly emotive
and health issue for human beings. It has been
argued that the experience of aging and age-related
diseases may be one of the basis for the origin of
human cultural aspects including religion and moral
codes of conduct (Holliday 2001).

During the last one hundred years, progress in
biomedicine and healthcare have resulted in a
steady increase in human life expectancy throughout
the world, primarily by minimizing childhood
deaths. This has made the survival beyond the
Darwinian ELS a reality for human beings in large
numbers that were never seen before in human
history. However, this increase in lifespan has not
been accompanied by an improvement in health-
span of the elderly who often go through a long

period of physical and mental disability and disease
before their ultimate demise. Therefore,
gerontomodulation to maintain the functional ability
or to slow down its loss is a challenging and a high
priority social, political and economic issue throughout
the world (Holliday  2000, Wilmoth  2000).

However, the history of anti-aging research and
therapy is replete with fraud, pseudoscience and
charlatanism, and has often given a bad name to the
whole field. Claims for miraculous remedies and
promises for extremely long lifespan are prevalent
even today. Recently, highly critical analyses of such
approaches have been made by biogerontologists
with a view to educate and inform people about the
science and non-sense of aging-intervention research
(Olshansky & Carnes  2001, Olshansky et al. 2002).

While not giving serious consideration to the
claims made by charlatans, it cannot be ignored that
several researchers are making genuine attempts to
test and develop various means of intervention for
the prevention and treatment of age-related diseases,
for regaining the functional abilities and for
prolonging the lifespan of experimental organisms.
Some of the main anti-aging approaches include
supplementation with hormones including growth
hormone (Wolfe 1998), dehydroepiandrosterone
(DHEA) (Baulieu 1996), melatonin (Reiter 1995) and
estrogen (Miller & Franklin 1999), and nutritional
supplementation with synthetic and natural
antioxidants in purified form or in extracts prepared
from plant and animal sources. Although some of
these approaches have been shown to have some
clinical benefits in the treatment of some diseases in
the elderly, none of these really modulate the aging
process itself (Hayflick 2000, Olshansky et al. 2002).

Furthermore, claims for the benefits of intake of
high doses of vitamins and various antioxidants and
their supposed anti-aging and life-prolonging effects
have very little scientific evidence to back them
(Le Bourg 2001). Some experiments have been
performed demonstrating the extension of lifespan
of Drosophila by overexpression of superoxide
dismutase and catalase genes (Orr & Sohal 1994), but
the possibilities of a successful gene therapy for
aging is considered as a mission impossible (Rattan
1997, 1998a). In contrast to this, nutritional modula-
tion through calorie restriction has been shown to
be an effective anti-aging and longevity extending
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approach in rodents and monkeys, with possible
applications to human beings (Lane et al. 2002,
Le Bourg  2001, Masoro  2000, Roth et al. 2002).

Hormesis A recent approach in geronto-
modulation is rooted in making use of the
fundamental characteristic of living systems, the
homeodynamic property of self-maintenance and
repair, as discussed above. Since aging is
characterized by a decrease in the adaptive abilities
due to progressive failure of homeodynamics, it has
been hypothesized that if cells and organisms are
exposed to brief periods of stress so that their stress
response-induced gene expression is upregulated
and the related pathways of maintenance and repair
are stimulated, one should observe some anti-aging
and longevity-promoting effects. Such a
phenomenon in which stimulatory responses to low
doses of otherwise harmful conditions improve the
functional ability of cells and organisms is known as
hormesis.

Although the phenomenon of hormesis has been
defined variously in different contexts (Calabrese &
Baldwin 2000a, Parsons  2000), hormesis in aging is
characterized by the beneficial effects resulting from
the cellular responses to mild repeated stress (Rattan
2001). Stresses that have been reported to delay
aging and prolong longevity in various systems (for
example, yeast, Paramecium, Drosophila,
nematodes, rodents and human cells) include
temperature shock, irradiation, heavy metals, pro-
oxidants, acetaldehyde, alcohols, hypergravity,
exercise and calorie restriction (Calabrese & Baldwin
2000b, Le Bourg et al. 2000, Masoro 1998, 2000,
Minois  2000, Neafsey 1990, Parsons 1989, Shama et al.
1998). Hormesis-like beneficial effects of chronic but
mild undernutrition have also been observed for
human beings (Raji et al. 1998). For example, it was
reported that peripheral blood lymphocytes
isolated from people with low body mass index,
representing a group with natural intake of
restricted calories, had higher DNA repair capacity
and higher levels of DNA polymerase ?, which were
also maintained during aging (Raji et al. 1998).

During the last few years, research done in our
labs have also shown hormetic effects of repeated
mild heat shock (RMHS) on human cells. Using
RMHS regime of exposing serially passaged human
fibroblasts to 41°C for 1 hr twice a week throughout
their replicative lifespan in vitro, we have reported

several beneficial anti-aging effects (Fonager et al.
2002, Rattan 1998b, Verbeke et al. 2000, 2001,
Verbeke et al. 2002). These effects included a
reduction in the accumulation of oxidized and
glycoxidized proteins, an increase in the levels of
various heat shock proteins (hsp70, hsc70 and
hsp27), an increase in proteasomal activities, an
increase in antioxidative abilities, and increased
resistance to ethanol, hydrogen peroxide and UV-A
irradiation (Fonager et al. 2002, Verbeke et al. 2001,
Verbeke et al. 2002). An important aspect of these
studies is the observation that anti-aging and
beneficial effects of repeated mild heat shock on
human cells were observed without inducing
additional cell proliferation. It appears that the
progression of cellular aging in vitro in terms of
accumulation of molecular damage can be slowed
down without escaping the regulatory mechanisms
of cell cycle check-points.

Studies on the application of hormesis in aging
research and therapy are only beginning to be
performed and other chemical, physical and
biological treatments need to be tested to unravel
various pathways of maintenance and repair whose
sustained activities improve the physiological
performance and survival of cells and organisms.
However, there are several issues that remain to be
resolved before mild stress can be used as a tool to
modulate aging and prevent the onset of age-related
impairments and pathologies (Rattan  2001). Some of
these issues are: (1) how to establish biochemical and
molecular criteria for determining the hormetic
levels for different stresses; (2) how to identify
differences and similarities in stress response
pathways initiated by different stressors; (3) how to
quantify the extent of various stress responses; (4)
how to determine the interactive and pleiotropic
effects of various stress response pathways; (5) how
to adjust the levels of mild stress for age-related
changes in the sensitivity to stress; and (6) how to
determine the biological and evolutionary costs of
repeated exposure to stress.

Finally, it must be emphasized that the goal of
research on aging is not to increase human longevity
regardless of the consequences, but to increase
active longevity free from disability and functional
dependence. Although substantial information
about the descriptive aspects of biological aging has
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been gathered, effective means of gerontmodulation
are still not in sight. The ultimate solution to the
problem of aging and death requires unravelling the
complex network of genes influencing aging and
longevity, and complete understanding of all
components of the milieu in which genes and gene
products function.
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