
REVIEW ARTICLE

Biogerontology: from here to where? The Lord Cohen
Medal Lecture-2011

Suresh I. S. Rattan

Received: 8 July 2011 / Accepted: 18 August 2011 / Published online: 25 August 2011

� Springer Science+Business Media B.V. 2011

Abstract Ageing is a progressive shrinkage of the

homeodynamic space and, at the molecular level, it is

associated with the stochastic occurrence and pro-

gressive accumulation of molecular damage. Imper-

fection of the maintenance and repair systems results

in the failure of homeodynamics characterized by

increased molecular heterogeneity, altered cellular

functioning, reduced stress tolerance and reduced

remodeling and adaptation, which lead to increased

probability of diseases and eventual death. Although,

several types of molecular damages have been shown

to accumulate and increase molecular heterogeneity

during ageing, its relevance and significance with

respect to the physiology, survival and longevity

remains to be determined. Such studies are essential

for establishing biomarkers of health, frailty, remod-

eling and adaptation, and for developing effective

methods for the prevention and reversion of age-

related changes. A promising strategy for ageing

intervention and modulation is that of strengthening

the homeodynamics through repeated mild stress-

induced hormesis by physical, biological and nutri-

tional hormetins. Because a number of ethical, social,

and personal implications emerge by the develop-

ment and use of anti-ageing and life-extending

technologies, biogerontologists should incorporate

these elements while developing their research

agenda in biogerontology.
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Introduction

Among the previous recipients of the Lord Cohen of

Birkenhead Medal, awarded by the British Society

for Research on Ageing (BSRA), Robin Holliday and

Leonard Hayflick, have boldly stated that ageing was

no longer an unsolved problem in biology (Hayflick

2007; Holliday 2006). This assertion underlines the

fact that biological basis of ageing are well under-

stood and a distinctive framework has been estab-

lished, based on which general principles of ageing

and longevity can be formulated, and those can be the

basis for developing interventions towards achieving

a healthy old age. These biological principles of

ageing and longevity are summarized in Table 1.

Thus, ageing is an emergent, epigenetic and a

meta-phenomenon, which is not controlled by a

single mechanism. Although, individually no tissue,

organ or system becomes functionally exhausted even

in very old organisms, it is their combined interaction

and interdependence that determines the survival of

the whole. The evidence that genes have a limited

S. I. S. Rattan (&)

Laboratory of Cellular Ageing, Department of Molecular

Biology and Genetics, Aarhus University, Gustav Wieds

Vej 10, 8000 Aarhus C, Denmark

e-mail: rattan@mb.au.dk

123

Biogerontology (2012) 13:83–91

DOI 10.1007/s10522-011-9354-3



(about 25%) influence upon lifespan in human beings

has mainly come from the studies performed on

centenarians and their siblings, twins and long living

families (Herskind et al. 1996). A combination of

genes, milieu and chance determine the course and

consequences of ageing and the duration of survival

of an individual (Rattan 2007b).

Homeodynamic space and its shrinkage

as the phenotype of ageing

All living systems have the intrinsic ability to

respond, to counteract and to adapt to the external

and internal sources of disturbance. The traditional

conceptual model to describe this property is homeo-

stasis, which has dominated biology, physiology and

medicine since 1930s. However, advances made in

our understanding of the processes of biological

growth, development, maturation, reproduction, and

finally, of ageing, senescence and death have led to

the realization that homeostasis as an explanation is

incomplete. The main reason for the incompleteness

of the homeostasis model is its defining principle of

‘‘stability through constancy’’, which does not take

into account the themes, such as cybernetics, control

theory, catastrophe theory, chaos theory, information

and interaction networks, which comprise and under-

line the modern biology of complexity (Rattan

2007a). Since 1990s, the term homeodynamics is

being increasingly used to account for the fact that

the internal milieu of complex biological systems is

not permanently fixed, is not at equilibrium, and is a

dynamic regulation and interaction among various

levels of organization (Yates 1994).

Survival of an organism is a constant struggle

between the occurrence of damage and the mecha-

nisms of maintenance and repair. There are three

major sources of damages within a cell: (1) reactive

oxygen species (ROS) and free radicals (FR) formed

due to external inducers of damage (for example

ultra-violet rays), and as a consequence of cellular

metabolism involving oxygen, metals and other

metabolites; (2) nutritional components such as

glucose and its metabolites, and their biochemical

interactions with FR; and (3) spontaneous errors in

biochemical processes, such as DNA duplication,

transcription, post-transcriptional processing, transla-

tion, and post-translational modifications. Millions

and millions of damaging events occur in cells

constantly, but a wide range of molecular, cellular

and physiological pathways of repair counteract them

and assure survival. These maintenance, repair and

defense systems range from multiple pathways of

nuclear and mitochondrial DNA repair to FR-coun-

teracting mechanisms, protein turnover and repair,

detoxification mechanisms, and other processes

including immune- and stress-responses. All these

processes involve numerous genes whose products

and their interactions give rise to a ‘‘homeodynamic

space’’ or the ‘‘buffering capacity’’, which is the

ultimate determinant of an individual’s chance and

ability to survive and maintain a healthy state

(Holliday 2007; Rattan 2006).

An organism is born with certain extent of homeo-

dynamic space, which undergoes expansion during

growth, development and maturation, and reaches a

level in accordance with the evolutionary life history

and ELS of the species (Fig. 1). An effective homeo-

dynamic space or buffering capacity has three major

Table 1 Biological principles of ageing and longevity derived from biogerontological research

1. Evolutionary principle: Ageing is an emergent phenomenon observable primarily in conditions which allow survival of the

organisms beyond the natural lifespan of a species, termed ‘essential lifespan’ (ELS), (Carnes 2011; Rattan 2000a, b; Rattan and

Clark 2005).

2. Non-genetic principle: There is no fixed and rigid genetic programme, which determines the exact duration of survival of an

organism, and there are no real gerontogenes whose sole function is to cause ageing and to determine precisely the lifespan of an

organism (Rattan 1985; Rattan 1995; Rattan and Singh 2009).

3. Differential principle: The progression and rate of ageing is different in different species, organisms within a species, organs

and tissues within an organism, cell types within a tissue, sub-cellular compartments within a cell type, and macromolecules

within a cell.

4. Molecular mechanistic principle: Ageing is characterized by a stochastic occurrence, accumulation and heterogeneity of

damage in macromolecules, leading to the shrinkage of the homeodynamic space and the failure of maintenance and repair

pathways (Rattan 2006).
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characteristics: (1) stress response (Singh et al. 2007);

(2) the ability for damage prevention, repair and

removal (Holliday 2006); and (3) the ability for

continuous remodeling and adaptation (Franceschi

et al. 2000). However, there is a ‘‘vulnerability zone’’

around this protective homeodynamic space, the extent

of which can vary among individuals depending on

factors such as genetic polymorphism, prenatal expo-

sures, and early growth and developmental conditions

(Bocklandt et al. 2011; Tacutu et al. 2010). One way of

conceptualizing ageing is the progressive shrinkage of

the homeodynamic space during the period of survival

beyond ELS (Fig. 2).

Molecular basis of ageing

The mechanistic theories of biological ageing have

often focused on a single category of inducers of

molecular damage as an explanation for possible

mechanisms of ageing (Rattan 2006). For example,

the free radical theory of ageing (FRTA), proposed in

1954, arose from a consideration of the ageing

phenomenon from the premise that a single common

biochemical process may be responsible for the

ageing and death of all living beings (for an update,

see (Harman 2006; Harman 2009)). There is abun-

dant evidence to show that a variety of ROS and other

FR are indeed involved in the occurrence of

molecular damage, which can lead to structural and

functional disorders, diseases and death. The chem-

istry and biochemistry of FR is very well worked out,

and the cellular and organismic consequences are

well documented (Sitte and von Zglinicki 2003).

However, the main criticisms raised against FRTA

are with respect to its lack of incorporation of the

essential and beneficial role of FR in the normal

functioning and survival of biological systems

(Gruber et al. 2008; Halliwell 2009; Howes 2006;

Sanz and Stefanatos 2008). Additionally, FRTA

presents FR as the universal cause of damage without

taking into account the differences in the wide range

of FR-counteracting mechanisms in different species

(Barja 2008; Perez et al. 2009). Furthermore, a large

body of data showing the contrary and/or lack of

predictable and expected beneficial results of anti-

oxidant and FR-scavenging therapies have restricted

the FRTA to being only a partial explanation of some

of the observed changes during ageing (Doonan et al.

2008; Gems and Doonan 2009; Gruber et al. 2008;

Keaney and Gems 2003; Keany et al. 2004; Le Bourg

2005; Le Bourg and Fournier 2004; Pun et al. 2010).

Studies performed on the naked mole-rats also

question the role of oxidative damage in ageing,

where higher levels of lipid peroxidation, protein

carbonylation, and DNA oxidative damage are pres-

ent even at a young age without having any obvious

adverse effects (Perez et al. 2009).

Fig. 1 Homeodynamic space is the ability of the living

systems to respond and counteract stress, to repair and remove

the damage, and to undergo constant remodelling and

adaptation. Genetic polymorphism and epigenetic factors

including prenatal exposures and lifestyle establish a

personalised functional homeodynamic space during growth,

development and maturation, within the evolutionary con-

straints of essential lifespan (ELS) of the species. Due to the

imperfections of the maintenance and repair systems, there is

always a small vulnerability zone even at a young age
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The other mechanistic theory of biological ageing,

the so-called protein error theory of ageing (PETA),

also known as the error catastrophe theory, has

generated much controversy and debate (Holliday

1996; Rattan 1996; Rattan 2003; Rattan 2010). Since

the spontaneous error frequency in protein translation

is generally several orders of magnitude higher than

that in DNA replication and RNA transcription, the

role of protein errors and their feedback in biochem-

ical pathways has been considered to be a crucial one

with respect to ageing. Several attempts have been

made to determine the accuracy of translation in cell-

free extracts, and most of the studies show that there

is an age-related increase in the mis-incorporation of

nucleotides and amino acids (Holliday 1996; Rattan

1996; Rattan 2003). It has also been shown that there

is an age-related accumulation of aberrant DNA

polymerases and other components of the transcrip-

tional and translational machinery (Fukuda et al.

1999; Holliday 1996; Rattan 1996; Rattan 2003;

Srivastava and Busbee 2002; Srivastava et al. 2000).

Further evidence in support of PETA comes from

experiments which showed that an induction and

increase in protein errors can accelerate ageing in

human cells and bacteria (Holliday 1996; Nyström

2002a; Nyström 2002b; Rattan 1996; Rattan 2003).

Similarly, an increase in the accuracy of protein

synthesis can slow ageing and increase the lifespan in

fungi (Holbrook and Menninger 2002; Silar and

Picard 1994; Silar et al. 2000). Therefore, it is

possible that errors in various components of protein

synthetic machinery and in mitochondria do have

long-term effects on cellular stability and survival

(Hipkiss 2003; Holliday 2005; Kowald and Kirkwood

1993a; Kowald and Kirkwood 1993b). However,

almost all these methods to determine the error levels

have relied on indirect in vitro assays, and so far

direct, realistic and accurate estimates of age-related

changes in errors in cytoplasmic and mitochondrial

proteins, and their biological relevance, have not

been made. It will be necessary to combine several

methods, such as electrophoresis, mass-spectrometry,

protein–protein interactions and antibody-based

detection of molecular heterogeneity to find out the

extent of protein errors and their biological role in

aging.

Both the FRTA and PETA provide molecular

mechanisms for the occurrence of molecular damage.

Furthermore, it has been realized that the nutritional

components, specially the sugars and metal-based

micronutrients, can induce, enhance and amplify the

molecular damage either independently or in combi-

nation with other inducers of damage (Schaffer et al.

2011). Additionally, interest in the role of epigenetics

as the molecular basis for age-related changes has

resurged (Kahn and Fraga 2009).

Molecular heterogeneity and challenges

for biogerontology

The biological consequences of increased levels of

molecular damage can be wide ranging, including

altered gene expression, genomic instability, muta-

tions, loss of cell division potential, cell death,

impaired intercellular communication, tissue disor-

ganization, organ dysfunctions, and increased vul-

nerability to stress and other sources of disturbance.

However, a common mechanistic basis for all

these consequences is the increased molecular

Fig. 2 Ageing is the

progressive shrinkage of the

homeodynamic space,

resulting in an increase in

the vulnerability zone and

in the probability of

emergence of age-related

diseases and the eventual

death
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heterogeneity. Since there is an extremely low

probability that any two molecules become dam-

aged in exactly the same way and to the same

extent, an increase in molecular heterogeneity is

inevitable. For example, if there are a thousand

protein molecules freshly translated from a newly

transcribed mRNA, and all these molecules are

equally prone to post-translational stochastic dam-

age as a function of their dwell time, very soon

molecular heterogeneity will emerge within the

molecular population. Furthermore, the nature, site

and extent of damages will give rise to a popula-

tion of that specific protein with alterations in

structure and function ranging from being fully

active to totally inactive molecules.

Among the thousands of types of proteins in a cell,

some proteins may become preferentially damaged in

a particular context. For example, it has been reported

that among 1,000–2,000 proteins inside the mito-

chondria, aconitase is detected as being preferentially

oxidatively damaged (Das et al. 2001; Yan et al.

1997). Some other proteins known to be more prone

to oxidation include Hsp70, protein elongation fac-

tors, glutamine synthetase, glutamate synthetase,

vimentin and pyruvate kinase (Ahmed et al. 2010;

Kueper et al. 2007; Nyström 2002b; Stadtman and

Levine 2003). The resulting increase in molecular

heterogeneity and dysfunctionality has the following

two major consequences:

(1) Interrupted networks Since biological macromol-

ecules generally work in scale free networks with

some proteins having a large number of interacting

partners and the others having a few partners

(Barabasi and Bonabeau 2003; Barabasi and

Oltvai 2004), increased molecular heterogeneity

is bound to lead to differential network perturba-

tions and interruptions. Such interruptions may

first happen at the weak links followed by

disorganization, congestion and collapse of strong

links and high degree central hubs (Budovsky et al.

2007; Csermely 2006; Szalay et al. 2007; Tacutu

et al. 2010). Some of the major consequences of

interrupted networks will include inhibition of

signaling cascade and transcription factor-regu-

lated gene expression, dysregulation of feedback

control leading to metabolic instability, and

increased sensitivity to stress and other damaging

agents (Rattan 2008b).

(2) Illegitimate networks Occurrence of damage in

macromolecules often leads to their altered

structure, function and stability, such as altered

folding, mistargetting, and altered epitope

exposure. This can result in the formation of

novel interactions, hubs and network structures

(Budovsky et al. 2007; Szalay et al. 2007;

Tacutu et al. 2010), which will bring about new

biological phenotypes and altered hierarchy of

various mediators of the network, for example

the mediator ranking in the immune system

(Tieri et al. 2005). Illegitimate networks can

also lead to the activation, translocation and

binding of transcription factors and other

responsive elements resulting in the unwar-

ranted gene expression, which was otherwise

kept under strict regulation.

One of the challenges for biogerontologists is to

design experiments and to develop analytical meth-

ods for determining the consequences of interrupted

and illegitimate networks. For further progress in

biogerontology, it is extremely important to: (i) deter-

mine the relevance and significance of different types

and levels of molecular damage in physiological

terms; and (ii) establish the profiles of young versus

old, and healthy versus unhealthy molecular net-

works. Such studies are essential with respect to

establishing biomarkers of health, frailty, remodeling

and adaptation; and have wide ranging implications

in the prevention and reversion of age-related

changes.

Anti-ageing, healthy ageing and hormesis

According to the principles of ageing and longevity

described above, occurrence of ageing in the period

beyond ELS and the onset of one or more diseases

before eventual death, appear to be the evolutionary

sequence of events. This viewpoint makes modula-

tion of ageing by prevention very much different

from the treatment of a specific disease (Carnes 2011;

Holliday and Rattan 2010). The scientific and rational

interventional strategies aim to achieve ‘‘healthy

ageing’’ by strengthening the homeodynamics, which

has the potential to slow down the rate of ageing and

prevent or delay the physiological decline (Rattan

2005).
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A critical component of the homeodynamic space

is the so-called stress response (SR). In this context,

the term ‘‘stress’’ is defined as a signal generated by

any physical, chemical or biological factor (stressor),

which in a living system initiates a series of events in

order to counteract, adapt and survive. The conse-

quences of SR can be both harmful and beneficial

depending both on the intensity, duration and

frequency of the stress, and on the price paid in

terms of energy utilisation and other metabolic

disturbances. But the most important aspect of SR

is that it is not monotonic with respect to the dose of

the stressor, rather it is almost always characterized

by a nonlinear biphasic relationship. Several meta-

analyses performed on a large number of papers

published in the fields of toxicology, pharmacology,

medicine, and radiation biology have led to the

conclusion that the most fundamental shape of the

dose response is neither threshold nor linear, but is

U- or inverted U-shaped, depending on the endpoint

being measured (Calabrese 2008; Calabrese et al.

2007). This phenomenon of biphasic dose response

was termed as hormesis (Southam and Ehrlich 1943).

The terminology for hormesis has been further

refined to specify the nature of the hormetic

responses, such as physiological hormesis, pre-con-

ditioning hormesis, and post-exposure conditioning

hormesis (Calabrese et al. 2007).

Hormesis in ageing is defined as the life support-

ing beneficial effects resulting from the cellular

responses to single or multiple rounds of mild stress

(Rattan 2004; Rattan 2008a). Various mild stresses

that have been reported to delay ageing and prolong

longevity in cells and animals include thermal shock,

irradiation, heavy metals, pro-oxidants, electromag-

netic field, hypergravity, exercise and food restriction

(Le Bourg and Rattan 2008; Rattan and Demirovic

2009; Rattan and Demirovic 2010a). Hormesis is also

an explanation for the health beneficial effects of

various foods and their components, including spices,

flavanoids and polyphenols (Demirovic and Rattan

2011; Hayes 2007; Hayes 2010; Lima et al. 2011;

Wiegant et al. 2009).

Various intracellular pathways of SR can be used

as the screening platform for discovering, testing

and monitoring the effects of hormesis-inducing

conditions and compounds, termed hormetins

(Rattan 2008a; Rattan and Demirovic 2010b). Such

hormetins may be categorized as: (1) physical

hormetins, such as exercise, heat and radiation; (2)

biological and nutritional hormetins, such as micro-

bial exposure, micronutrients, spices and other

sources; and (3) psychological hormetins, such as

mental challenge and focused attention or medita-

tion. Understanding the hormetic and interactive

mode of action of natural and processed foods is a

challenging field of research, and has great potential

in developing nutritional and other life style mod-

ifications for ageing intervention and therapies. For

example, it may be possible to develop multi-

hormetin formulations whose mode of action is

through specific SR pathways resulting in the

hormetically strengthened homeodynamic space.

Incorporating psycho-social realities of ageing

in biogerontology

As a biomedical issue, the biological process of

ageing underlies all major human diseases. Although,

the optimal treatment of each and every disease,

irrespective of age, is a social and moral necessity,

preventing the onset of age-related diseases by

intervening in the basic process of ageing is the best

solution for improving the quality of human life in

old age (Farrelly 2010; Rattan 2005). However, the

personal and professional attitudes towards ageing

interventions and life extension vary widely (Blag-

osklonny 2009; Underwood et al. 2009), and a

number of ethical, social, and personal implications

emerge by the development and use of anti-ageing

and life-extending technologies (Partridge et al. 2009;

Seppet et al. 2011; Wilson 2009). For example, it has

been suggested that the realities of the social,

political and economic constraints make it necessary

to prioritize research areas in accordance with the

proximate and distant needs of the elderly (Olshansky

et al. 2011). However, others have argued against the

user-led design strand of argument concerning older

people as experts on their own ageing (Faragher

2009). Biogerontologists must become aware of these

psycho-social issues and elements, and incorporate

them into their research agenda. This will help to

establish the future direction for biogerontology in

‘‘shifting the existing reference point of the medical

sciences to one that is shaped by the findings of

evolutionary biology and biodemography’’ (Farrelly

2010).
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