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ABSTRACT: Strategies that lead to the upregulation of the proteasome
are known to elicit beneficial consequences to the organism by counter-
ing oxidative stress–associated disorders, such as protein conformational
diseases, cancer, and aging. Mild treatment with proteasome inhibitors
has been previously demonstrated to stimulate proteasome activity and
cellular resistance against oxidative injury. However, the mechanism for
this action has not been clearly defined. We examined the role of the nu-
clear factor-E2-related factor 2 (Nrf2) in fibroblasts, a key transactivator
of the antioxidant response pathway, in the regulation of the proteasome
by its inhibitor MG-132. Here, we demonstrate that the stimulation of
the proteasome by low levels of MG-132 can be abrogated by small in-
terfering RNAs (siRNAs) targeted against Nrf2. Consistently, cells that
constitutively express Nrf2 exhibit elevated levels of proteasome activi-
ties. We further investigate how its beneficial effects, that is, proteasome
stimulation, are manifested in young and replicative-senescent cells. Our
data underscore that manipulation of Nrf2 by the administration of phar-
macologically low levels of proteasome inhibitors may prove to be an
alternatively potent strategy for inducing long-term protective effects
against oxidative stress.
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INTRODUCTION

Long-term exposure to proteasome inhibitors leads to severe oxidative stress,
cell cycle arrest, downregulation of the proteasome, accumulation of protein
aggregates, and appearance of senescence-like phenotypes.1–5 It is widely ac-
cepted that the induction of cell cycle arrest is mainly attributed to the in-
hibition of the ubiquitin 26S proteasome pathway, which controls cell cycle
regulators.5,8 Analysis of gene expression in neural cells subjected to 12-week
proteasome inhibition showed a wide range of cellular changes, such as re-
duced proteasome expression, and a weakened oxidative defense mechanism
accompanied by the downregulation of glutathione S-transferase among oth-
ers.6 Such reduction in oxidative defense in response to proteasome inhibition
is also evident from the increased levels of DNA and RNA oxidation.7

Short-term proteasome inhibition, on the other hand, results in an opposing
effect that leads to improved cellular fitness accompanied by the induction
of glutathione S-transferase (GST), heat-shock proteins (HSPs), and several
proteasome genes.9 The activation of oxidative-defense genes is known to
occur through transcription factors like heat-shock factor 1 (HSF1), activator
protein 1 (AP-1), and Nrf2.9,10 Recently, it has been found that the proteasome
is also transcriptionally regulated by Nrf2, suggesting a role for a proteasomal
degradation pathway in the cellular adaptive response to oxidative stress.11 In
fact, the promoter regions of 20S and 19S, but not the immunoproteasome,
harbor two antioxidant response elements (AREs).12

The Nrf2 is a cap-n-collar family of transcription factors that regulates
cellular defenses against ROS. Under normal physiologic conditions, it ex-
ists in its inactive form because of sequestration by the cytoplasmic nuclear
translocation-inhibitor KEAP1, which delivers it to proteasomal degrada-
tion.13–15 Upon oxidative stress, Nrf2 is released from KEAP1 and translocates
to the nucleus and initiates transcription of some 200 genes with the cis-acting
antioxidant response element (ARE). Most of these genes have known roles in
protecting the cell against oxidative and electrophilic stressors.11 As activity of
the proteasome is shown to be stimulated by short-term or low-dose exposure
to proteasome inhibitors, we wanted to test whether Nrf2 is the transcription
factor that controls this negative feedback loop of proteasome activity and
gene expression. Furthermore, we tested whether the response to proteasome
inhibition differs between young and replicative-senescent human cells.

RESULTS AND DISCUSSION

Normal adult human fibroblasts were co-transfected with the pNQR-ARE,
a firefly luciferase reporter construct controlled by an ARE in the promoter
region, and pRL-RSV, a constitutive Renilla luciferase expression plasmid.
After incubation for 12 h with increasing amounts of MG-132 (2.5–30 nM),
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FIGURE 1. Pretreatment with the proteasome-inhibitor MG-132 leads to an increased
Nrf2, an upregulated proteasome activity in young cells, which was abolished by Nrf2
siRNA. (A) Dual-luciferase reporter (pNQR-ARE, pRL-RSV) on TIG-1 cells treated with
different concentrations of the MG-132 for 12–16 h resulted in the upregulation of the Nrf2.
(B) Assay for the chymotrypsin-like proteasome activity of young cells after treating with
30 nM MG-132 for 16 h and Nrf2 shRNA.

a dual-luciferase assay was performed using a commercial kit from Promega
(Madison, WI). The increasing levels of MG-132 resulted in a dose-dependent
elevation of Nrf2 activity with the highest induction at 30 nM (FIG. 1A).
After 12 h of incubation with 30 nM MG-132, proteasome activity was in-
creased but not to the extent of the cells transfected with the pcDNA3-Nrf2, a



KRAFT et al.: PROTEASOME, NRF2, AND CELLULAR AGING 423

CMV-driven Nrf2 expression cassette (FIG. 1B). The increase in proteasome
activity in Nrf2-overexpressing transfectants and in cells treated with 30 nM
MG-132 was abolished after (co-)transfection with pUC-Nrf2i, a U6 promoter–
driven short hairpin RNA against Nrf2 (FIG. 1B). These results demonstrated
that proteasome activity could be stimulated by MG-132 and this proteasome-
stimulatory effect may be controlled by the Nrf2 transcription factor.

Finally, we tested the reactivity of young and replicative-senescent cells to
mild and severe treatment with MG-132. Proteasome activity was induced
by 30 nM (mild) MG-132 treatment both in replicative-senescent (old) and
young cells. However, in the old cells induction was only about one-third of
the increase in proteasome activity exhibited by young cells. Treatment with
MG-132 (30 �M for 1 h) induced severe cell death in the rapidly growing
young cells (∼84% death), whereas the replicative-senescent cells were less
affected (∼33% death) (data not shown). These data suggest that MG-132-
induced protective effects against oxidative stressors via Nrf2 activation may
be differentially regulated in young and senescent cells.16–19

In summary, our data underscore that the manipulation of the Nrf2 pathway
by pharmacologically low levels of proteasome inhibitors could prove to be
an alternative potent strategy for inducing long-term protective effects against
oxidative stress and aging. We are further investigating how such beneficial
effects, that is, proteasome stimulation and increased fitness, are manifested
during replicative senescence.
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